Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
1.
J Pharm Pharmacol ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652540

RESUMO

OBJECTIVES: Dopamine and related receptors are evidenced in pancreatic endocrine tissue, but the impact on islet ß-cell stimulus-secretion as well as (patho)physiological role are unclear. METHODS: The present study has evaluated islet cell signalling pathways and biological effects of dopamine, as well as alterations of islet dopamine in rodent models of diabetes of different aetiology. KEY FINDINGS: The dopamine precursor L-DOPA partially impaired glucose tolerance in mice and attenuated glucose-, exendin-4, and alanine-induced insulin secretion. The latter effect was echoed by the attenuation of glucose-induced [Ca2+]i dynamics and elevation of ATP levels in individual mouse islet cells. L-DOPA significantly decreased ß-cell proliferation rates, acting predominantly via the D2 receptor, which was most abundant at the mRNA level. The administration of streptozotocin (STZ) or high-fat diet (HFD) in mice significantly elevated numbers of dopamine-positive islet cells, with HFD also increasing colocalization of dopamine with insulin. At the same time, colocalization of dopamine with glucagon was increased in STZ-treated and pregnant mice, but unaffected by HFD. CONCLUSION: These findings highlight a role for dopamine receptor signalling in islet cell biology adaptations to various forms of metabolic stress.

2.
Biofactors ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38635341

RESUMO

Pancreatic polypeptide (PP) is a postprandial hormone secreted from pancreatic islets that activates neuropeptide Y4 receptors (NPY4Rs). PP is known to induce satiety but effects at the level of the endocrine pancreas are less well characterized. In addition, rapid metabolism of PP by dipeptidyl peptidase-4 (DPP-4) limits the investigation of the effects of the native peptide. Therefore, in the present study, five novel amino acid substituted and/or fatty acid derivatized PP analogs were synthesized, namely [P3]PP, [K13Pal]PP, [P3,K13Pal]PP, [N-Pal]PP, and [N-Pal,P3]PP, and their impact on pancreatic beta-cell function, as well as appetite regulation and glucose homeostasis investigated. All PP analogs displayed increased resistance to DPP-4 degradation. In addition, all peptides inhibited alanine-induced insulin secretion from BRIN-BD11 beta cells. Native PP and related analogs (10-8 and 10-6 M), and especially [P3]PP and [K13Pal]PP, significantly protected against cytokine-induced beta-cell apoptosis and promoted cellular proliferation, with effects dependent on the NPY4R for all peptides barring [N-Pal,P3]PP. In mice, all peptides, except [N-Pal]PP and [N-Pal,P3]PP, evoked a dose-dependent (25, 75, and 200 nmol/kg) suppression of appetite, with native PP and [P3]PP further augmenting glucagon-like peptide-1 (GLP-1) and cholecystokinin (CCK) induced reductions of food intake. The PP peptides had no obvious detrimental effect on glucose tolerance and they did not noticeably impair the glucose-regulatory actions of GLP-1 or CCK. In conclusion, Pro3 amino acid substitution of PP, either alone or together with mid-chain acylation, creates PP analogs with benefits on beta-cell rest, islet cell turnover, and energy regulation that may be applicable to the treatment of diabetes and obesity.

3.
Clin Med Insights Endocrinol Diabetes ; 17: 11795514241238059, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38486712

RESUMO

Obesity and diabetes mellitus are prevalent metabolic disorders that have a detrimental impact on overall health. In this regard, there is now a clear link between these metabolic disorders and compromised bone health. Interestingly, both obesity and diabetes lead to elevated risk of bone fracture which is independent of effects on bone mineral density (BMD). In this regard, gastrointestinal (GIT)-derived peptide hormones and their related long-acting analogues, some of which are already clinically approved for diabetes and/or obesity, also seem to possess positive effects on bone remodelling and microarchitecture to reduce bone fracture risk. Specifically, the incretin peptides, glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), as well as glucagon-like peptide-2 (GLP-2), exert key direct and/or indirect benefits on bone metabolism. This review aims to provide an initial appraisal of the relationship between obesity, diabetes and bone, with a focus on the positive impact of these GIT-derived peptide hormones for bone health in obesity/diabetes. Brief discussion of related peptides such as parathyroid hormone, leptin, calcitonin and growth hormone is also included. Taken together, drugs engineered to promote GIP, GLP-1 and GLP-2 receptor signalling may have potential to offer therapeutic promise for improving bone health in obesity and diabetes.


Impact of peptides from the gut on bone health in obesity and diabetes mellitus Obesity and related type 2 diabetes (T2D) are prevalent diseases. Unfortunately, there is now a clear link between obesity and related T2D and poor bone health, leading to increased bone fracture risk. However, we know that peptides derived from the gut following a meal can possess positive effects on bone health and reduce bone fracture risk. These peptides are called glucagon-like peptide-1 (GLP-1), glucagon-like peptide-2 (GLP-2) and glucose-dependent insulinotropic polypeptide (GIP). Moreover, some of these peptides, GLP-1 and GIP, are already being used to treat obesity and T2D, whilst GLP-2 is used to treat people with short bowel syndrome. In other words, drugs that mimic the action of GLP-1, GLP-2 and GIP are available for human use. This current review article aims to provide an initial appraisal of the relationship between obesity, diabetes and bone health, with a focus on the positive impact of peptide hormones like GLP-1, GLP-2 and GIP for bone health in obesity/diabetes. The take home message is that drugs engineered to promote GIP, GLP-1 and GLP-2 action may have potential to offer therapeutic promise for improving bone health in obesity and diabetes.

4.
Peptides ; 171: 171096, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37714335

RESUMO

Spexin (SPX) and galanin (GAL) are two neuropeptides widely expressed in the central nervous system as well as within peripheral tissues in humans and other species. SPX and GAL mediate their biological actions through binding and activation of galanin receptors (GALR), namely GALR1, GALR2 and GLAR3. GAL appears to trigger all three galanin receptors, whereas SPX interacts more specifically with GALR2 and GLAR3. Whilst the biological effects of GAL have been well-described over the years, in-depth knowledge of physiological action profile of SPX is still in its preliminary stages. However, it is recognised that both peptides play a significant role in modulating overall energy homeostasis, suggesting possible therapeutically exploitable benefits in diseases such as obesity and type 2 diabetes mellitus. Accordingly, although both peptides activate GALR's, it appears GAL may be more useful for the treatment of eating disorders such as anorexia and bulimia, whereas SPX may find therapeutic application for obesity and obesity-driven forms of diabetes. This short narrative review aims to provide an up-to-date account of SPX and GAL biology together with putative approaches on exploiting these peptides for the treatment of metabolic disorders.


Assuntos
Diabetes Mellitus Tipo 2 , Hormônios Peptídicos , Humanos , Galanina/uso terapêutico , Galanina/farmacologia , Receptores de Galanina , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hormônios Peptídicos/metabolismo , Receptor Tipo 2 de Galanina/metabolismo , Obesidade/tratamento farmacológico
5.
Diabetes Obes Metab ; 26(1): 329-338, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37818589

RESUMO

AIM: The aim of the present study was to assess the long-term therapeutic efficacy of a recently discovered 28 amino acid peptide, Δ-theraphotoxin-Ac1 (Δ-TRTX-Ac1), originally isolated from venom of the Aphonopelma chalcodes tarantula. Δ-TRTX-Ac has previously been shown to improve pancreatic beta-cell function and suppress appetite. MATERIALS AND METHODS: Δ-TRTX-Ac1 was administered twice daily in high-fat fed (HFF) mice with streptozotocin (STZ)-induced insulin deficiency, namely HFF/STZ mice, for 28 days both alone and in combination with the venom-derived glucagon-like peptide-1 (GLP-1) mimetic, exenatide. RESULTS: Initial pharmacokinetic profiling of ΔTRTX-Ac1 revealed a plasma half-life of 2 h in mice, with ΔTRTX-Ac1 also evidenced in the pancreas 12 h post-injection. Accordingly, HFF-STZ mice received twice-daily injections of Δ-TRTX-Ac1, exenatide or a combination of both peptides for 28 days. As anticipated, HFF/STZ mice presented with hyperglycaemia, impaired glucose tolerance, decreased plasma and pancreatic insulin and disturbed pancreatic islet morphology. Administration of ΔTRTX-Ac1 reduced body weight, improved glucose tolerance and augmented pancreatic insulin content while decreasing glucagon content. Exenatide had similar benefits on body weight and pancreatic hormone content while also reducing circulating glucose. ΔTRTX-Ac1 decreased energy expenditure on day 28 whereas exenatide had no impact. All treatment regimens restored pancreatic islet and beta-cell area towards lean control levels, which was linked to significantly elevated beta-cell proliferation rates. In terms of benefits of combined ΔTRTX-Ac1 and exenatide treatment over individual agents, there was augmentation of glucose tolerance and ambulatory activity with combination therapy, and these mice presented with increased pancreatic glucagon. CONCLUSION: These data highlight the therapeutic promise of ΔTRTX-Ac1 for diabetes, with suggestion that benefits could be enhanced through combined administration with exenatide.


Assuntos
Glucagon , Hipoglicemiantes , Camundongos , Animais , Exenatida , Glucagon/metabolismo , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Glicemia/metabolismo , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Insulina/metabolismo , Peçonhas/farmacologia , Peçonhas/uso terapêutico , Glucose , Peso Corporal
6.
Diabetes Obes Metab ; 26(1): 16-31, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37845573

RESUMO

The development of pancreatic islet endocrine cells is a tightly regulated process leading to the generation of distinct cell types harbouring different hormones in response to small changes in environmental stimuli. Cell differentiation is driven by transcription factors that are also critical for the maintenance of the mature islet cell phenotype. Alteration of the insulin-secreting ß-cell transcription factor set by prolonged metabolic stress, associated with the pathogenesis of diabetes, obesity or pregnancy, results in the loss of ß-cell identity through de- or transdifferentiation. Importantly, the glucose-lowering effects of approved and experimental antidiabetic agents, including glucagon-like peptide-1 mimetics, novel peptides and small molecules, have been associated with preventing or reversing ß-cell dedifferentiation or promoting the transdifferentiation of non-ß-cells towards an insulin-positive ß-cell-like phenotype. Therefore, we review the manifestations of islet cell plasticity in various experimental settings and discuss the physiological and therapeutic sides of this phenomenon, focusing on strategies for preventing ß-cell loss or generating new ß-cells in diabetes. A better understanding of the molecular mechanisms underpinning islet cell plasticity is a prerequisite for more targeted therapies to help prevent ß-cell decline in diabetes.


Assuntos
Diabetes Mellitus , Células Secretoras de Insulina , Ilhotas Pancreáticas , Humanos , Plasticidade Celular , Ilhotas Pancreáticas/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Diabetes Mellitus/metabolismo , Transdiferenciação Celular
7.
Peptides ; 169: 171093, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37660881

RESUMO

Effects of sustained activation of glucagon-like peptide-1 (GLP-1) receptors (GLP-1R) as well as antagonism of receptors for glucose-dependent insulinotropic peptide (GIP) on intestinal morphology and related gut hormone populations have not been fully investigated. The present study assesses the impact of 21-days twice daily treatment with the GLP-1R agonist exendin-4 (Ex-4), or the GIP receptor (GIPR) antagonist mGIP(3-30), on these features in obese mice fed a high fat diet (HFD). HFD mice presented with reduced crypt depth when compared to normal diet (ND) controls, which was reversed by Ex-4 treatment. Both regimens lead to an enlargement of villi length in HFD mice. HFD mice had increased numbers of GIP and PYY positive ileal cells, with both treatment interventions reversing the effect on PYY positive cells, but only Ex-4 restoring GIP ileal cell populations to ND levels. Ex-4 and mGIP (3-30) marginally decreased GLP-1 villi immunoreactivity and countered the reduction of ileal GLP-1 content caused by HFD. As expected, HFD mice presented with elevated pancreatic islet area. Interestingly, mGIP(3-30), but not Ex-4, enhanced islet and beta-cell areas in HFD mice despite lack of effect of beta-cell turnover, whilst Ex-4 increased delta-cell area. Co-localisation of islet PYY or GLP-1 with glucagon was increased by Ex-4, whilst islet PYY co-immunoreactivity with somatostatin was enhanced by mGIP(3-30) treatment. These observations highlight potential new mechanisms linked to the metabolic benefits of GLP-1R agonism and GIPR antagonism in obesity.


Assuntos
Receptor do Peptídeo Semelhante ao Glucagon 1 , Ilhotas Pancreáticas , Animais , Camundongos , Camundongos Obesos , Peptídeo 1 Semelhante ao Glucagon , Exenatida , Polipeptídeo Inibidor Gástrico/farmacologia
8.
J Endocrinol ; 259(2)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37650517

RESUMO

The present study examines differences in metabolic and pancreatic islet adaptative responses following streptozotocin (STZ) and hydrocortisone (HC) administration in male and female transgenic GluCreERT2/Rosa26-eYFP mice. Mice received five daily doses of STZ (50 mg/kg, i.p.) or 10 daily doses of HC (70 mg/kg, i.p.), with parameters assessed on day 11. STZ-induced hyperglycaemia was evident in both sexes, alongside impaired glucose tolerance and reduced insulin concentrations. HC also had similar metabolic effects in male and female mice resulting in classical increases of circulating insulin indicative of insulin resistance. Control male mice had larger pancreatic islets than females and displayed a greater reduction of islet and beta-cell area in response to STZ insult. In addition, female STZ mice had lower levels of beta-cell apoptosis than male counterparts. Following HC administration, female mouse islets contained a greater proportion of alpha cells when compared to males. All HC mice presented with relatively comparable increases in beta- and alpha-cell turnover rates, with female mice being slightly more susceptible to HC-induced beta-cell apoptosis. Interestingly, healthy control female mice had inherently increased alpha-to-beta-cell transdifferentiation rates, which was decreased by HC treatment. The number of glucagon-positive alpha cells altering their lineage to insulin-positive beta cells was increased in male, but not female, STZ mice. Taken together, although there was no obvious sex-specific alteration of metabolic profile in STZ or HC mice, subtle differences in pancreatic islet morphology emphasises the impact of sex hormones on islets and importance of taking care when interpreting observations between males and females.


Assuntos
Células Secretoras de Glucagon , Ilhotas Pancreáticas , Feminino , Masculino , Camundongos , Animais , Insulina , Glucagon , Camundongos Transgênicos , Hidrocortisona
9.
PLoS One ; 18(5): e0286062, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37228045

RESUMO

Roux-en-Y gastric-bypass (RYGB) induced alterations in intestinal morphology and gut-cell hormone expression profile in the bypassed biliopancreatic-limb (BPL) versus the alimentary-limbs (AL) are poorly characterised. This pilot study has therefore explored effects following RYGB in high-fat-diet (HFD) and normal-diet (ND) rats. Female Wistar rats (4-week-old) were fed HFD or ND for 23-weeks prior to RYGB or sham surgeries. Immunohistochemical analysis of excised tissue was conducted three-weeks post-surgery. After RYGB, intestinal morphology of the BPL in both HFD and ND groups was unchanged with exception of a small decrease in villi width in the ND-RYGB and crypt depth in the HFD-RYGB group. However, in the AL, villi width was decreased in ND-RYGB rats but increased in the HFD-RYGB group. In addition, crypt depth decreased after RYGB in the AL of HFD rats. GIP positive cells in either limb of both groups of rats were unchanged by RYGB. Similarly, there was little change in GLP-1 positive cells, apart from a small decrease of numbers in the villi of the BPL in HFD rats. RYGB increased GLP-2 cell numbers in the AL of ND-RYGB rats, including in both crypts and villi. This was associated with decreased numbers of cells expressing PYY in the AL of ND-RYGB rats. The BPL appears to maintain normal morphology and unchanged enteroendocrine cell populations despite being bypassed in RYGB-surgery. In contrast, in the AL, villi area is generally enhanced post-RYGB in ND rats with increased numbers of GLP-2 positive cells and decreased expression of PYY.


Assuntos
Derivação Gástrica , Hormônios Gastrointestinais , Animais , Feminino , Ratos , Peptídeo 2 Semelhante ao Glucagon , Projetos Piloto , Ratos Wistar , Peptídeo YY/metabolismo
10.
Mol Cell Endocrinol ; 570: 111932, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37080378

RESUMO

OBJECTIVE: Glucagon receptor (GCGR) antagonism elicits antihyperglycemic effects in rodents and humans. The present study investigates whether the well characterised peptide-based GCGR antagonist, desHis1Pro4Glu9-glucagon (Lys12PAL), alters alpha-cell turnover or identity in mice. METHODS: Multiple low-dose streptozotocin (STZ) treated (50 mg/kg bw, 5 days) transgenic GluCreERT2;ROSA26-eYFP mice were employed. STZ mice received twice daily administration of saline vehicle or desHis1Pro4Glu9-glucagon (Lys12PAL), at low- or high-dose (25 and 100 nmol/kg, respectively) for 11 days. RESULTS: No GCGR antagonist induced changes in food or fluid intake, body weight or glucose homeostasis were observed. As expected, STZ dramatically reduced (P < 0.001) islet numbers and increased (P < 0.01) alpha-to beta-cell ratio, which was linked to elevated (P < 0.05) levels of beta-cell apoptosis. Whilst treatment with desHis1Pro4Glu9-glucagon (Lys12PAL) decreased (P < 0.05-P < 0.001) alpha- and beta-cell areas, it also helped restore the classic rodent islet alpha-cell mantle in STZ mice. Interestingly, low-dose desHis1Pro4Glu9-glucagon (Lys12PAL) increased (P < 0.05) alpha-cell apoptosis rates whilst high dose decreased (p < 0.05) this parameter. This difference reflects substantially increased (P < 0.001) alpha-to beta-cell transdifferentiation following high dose desHis1Pro4Glu9-glucagon (Lys12PAL) treatment, which was not fully manifest with low-dose therapy. CONCLUSIONS: Taken together, the present study indicates that peptidic GCGR antagonists can positively influence alpha-cell turnover and lineage in identity in multiple low-dose STZ mice, but that such effects are dose-related.


Assuntos
Insulina , Receptores de Glucagon , Humanos , Camundongos , Animais , Hiperplasia , Glucagon/farmacologia , Glicemia
11.
Expert Opin Pharmacother ; 24(5): 587-597, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36927378

RESUMO

INTRODUCTION: Obesity is recognized as a major healthcare challenge. Following years of slow progress in discovery of safe, effective therapies for weight management, recent approval of the glucagon-like peptide 1 receptor (GLP-1R) mimetics, liraglutide and semaglutide, for obesity has generated considerable excitement. It is anticipated these agents will pave the way for application of tirzepatide, a highly effective glucose-dependent insulinotropic polypeptide receptor (GIPR), GLP-1R co-agonist, recently approved for management of type 2 diabetes mellitus. AREAS COVERED: Following promising weight loss in obese individuals in Phase III clinical trials, liraglutide and semaglutide were approved for weight management without diabetes. Tirzepatide has attained Fast Track designation for obesity management by the US Food and Drug Association. This narrative review summarizes experimental, preclinical, and clinical data for these agents and related GLP-1R/GIPR co-agonists, prioritizing clinical research published within the last 10 years where possible. EXPERT OPINION: GLP-1R mimetics are often discontinued within 24 months meaning long-term application of these agents in obesity is questioned. Combined GIPR/GLP-1R agonism appears to induce fewer side effects, indicating GLP-1R/GIPR co-agonists may be more suitable for enduring obesity management. After years of debate, this GIPR-biased GLP-1R/GIPR co-agonist highlights the therapeutic promise of including GIPR modulation for diabetes and obesity therapy.


Assuntos
Diabetes Mellitus Tipo 2 , Peptídeo 1 Semelhante ao Glucagon , Humanos , Liraglutida/efeitos adversos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Obesidade/tratamento farmacológico , Polipeptídeo Inibidor Gástrico/farmacologia , Polipeptídeo Inibidor Gástrico/uso terapêutico , Receptor do Peptídeo Semelhante ao Glucagon 1/uso terapêutico
12.
Acta Physiol (Oxf) ; 238(1): e13961, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36916854
13.
J Bone Miner Res ; 38(5): 733-748, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36850034

RESUMO

Due to aging of the population, bone frailty is dramatically increasing worldwide. Although some therapeutic options exist, they do not fully protect or prevent against the occurrence of new fractures. All current drugs approved for the treatment of bone fragility target bone mass. However, bone resistance to fracture is not solely due to bone mass but relies also on bone extracellular matrix (ECM) material properties, i.e., the quality of the bone matrix component. Here, we introduce the first-in-class unimolecular dual glucose-dependent insulinotropic polypeptide/glucagon-like peptide-2 (GIP/GLP-2) analogue, GL-0001, that activates simultaneously the glucose-dependent insulinotropic polypeptide receptor (GIPr) and the glucagon-like peptide-2 receptor (GLP-2r). GL-0001 acts synergistically through a cyclic adenosine monophosphate-lysyl oxidase pathway to enhance collagen maturity. Furthermore, bilateral ovariectomy was performed in 32 BALB/c mice at 12 weeks of age prior to random allocation to either saline, dual GIP/GLP-2 analogues (GL-0001 or GL-0007) or zoledronic acid groups (n = 8/group). Treatment with dual GIP/GLP-2 analogues was initiated 4 weeks later for 8 weeks. At the organ level, GL-0001 modified biomechanical parameters by increasing ultimate load, postyield displacement, and energy-to-fracture of cortical bone. GL-0001 also prevented excess trabecular bone degradation at the appendicular skeleton and enhanced bone ECM material properties in cortical bone through a reduction of the mineral-to-matrix ratio and augmentation in enzymatic collagen cross-linking. These results demonstrate that targeting bone ECM material properties is a viable option to enhance bone strength and opens an innovative pathway for the treatment of patients suffering from bone fragility. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Assuntos
Fraturas Ósseas , Peptídeo 1 Semelhante ao Glucagon , Animais , Camundongos , Osso e Ossos/metabolismo , Densidade Óssea , Fraturas Ósseas/tratamento farmacológico , Polipeptídeo Inibidor Gástrico/análogos & derivados , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo
14.
Peptides ; 160: 170923, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36509169

RESUMO

Pancreatic polypeptide (PP), a member of the neuropeptide Y (NPY) family of peptides, is a hormone secreted from the endocrine pancreas with established actions on appetite regulation. Thus, through activation of hypothalamic neuropeptide Y4 (NPY4R or Y4) receptors PP induces satiety in animals and humans, suggesting potential anti-obesity actions. In addition, despite being actively secreted from pancreatic islets and evidence of local Y4 receptor expression, PP mediated effects on the endocrine pancreas have not been fully elucidated. To date, it appears that PP possesses an acute insulinostatic effect, similar to the impact of other peptides from the NPY family. However, it is interesting that prolonged activation of pancreatic Y1 receptors leads to established benefits on beta-cell turnover, preservation of beta-cell identity and improved insulin secretory responsiveness. This may hint towards possible similar anti-diabetic actions of sustained Y4 receptor modulation, since the Y1 and Y4 receptors trigger comparable cell signalling pathways. In terms of exploiting the prospective therapeutic promise of PP, this is severely restricted by a short circulating half-life as is the case for many regulatory peptide hormones. It follows that long-acting, enzyme resistant, forms of PP will be required to determine viability of the Y4 receptor as an anti-obesity and -diabetes drug target. The current review aims to refocus interest on the biology of PP and highlight opportunities for therapeutic development.


Assuntos
Diabetes Mellitus , Ilhotas Pancreáticas , Neuropeptídeos , Humanos , Animais , Polipeptídeo Pancreático/uso terapêutico , Polipeptídeo Pancreático/metabolismo , Receptores de Neuropeptídeo Y/metabolismo , Neuropeptídeo Y/metabolismo , Ilhotas Pancreáticas/metabolismo , Pâncreas/metabolismo
15.
J Pharm Pharmacol ; 74(12): 1758-1764, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36206181

RESUMO

OBJECTIVES: The antimalarial drug artemether is suggested to effect pancreatic islet cell transdifferentiation, presumably through activation γ-aminobutyric acid receptors, but this biological action is contested. METHODS: We have investigated changes in α-cell lineage in response to 10-days treatment with artemether (100 mg/kg oral, once daily) on a background of ß-cell stress induced by multiple low-dose streptozotocin (STZ) injection in GluCreERT2; ROSA26-eYFP transgenic mice. KEY FINDINGS: Artemether intervention did not affect the actions of STZ on body weight, food and fluid intake or blood glucose. Circulating insulin and glucagon were reduced by STZ treatment, with a corresponding decline in pancreatic insulin content, which were not altered by artemether. The detrimental changes to pancreatic islet morphology induced by STZ were also evident in artemether-treated mice. Tracing of α-cell lineage, through co-staining for glucagon and yellow fluorescent protein (YFP), revealed a significant decrease of the proportion of glucagon+YFP- cells in STZ-diabetic mice, which was reversed by artemether. However, artemether had no effect on transdifferentiation of α-cells into ß-cells and failed to augment the number of bi-hormonal, insulin+glucagon+, islet cells. CONCLUSIONS: Our observations confirm that artemisinin derivatives do not impart meaningful benefits on islet cell lineage transition events or pancreatic islet morphology.


Assuntos
Diabetes Mellitus Experimental , Células Secretoras de Insulina , Ilhotas Pancreáticas , Camundongos , Animais , Insulina/metabolismo , Glucagon/metabolismo , Glucagon/farmacologia , Transdiferenciação Celular , Diabetes Mellitus Experimental/metabolismo , Artemeter/farmacologia , Artemeter/metabolismo , Artemeter/uso terapêutico , Glicemia , Estreptozocina/farmacologia
16.
Peptides ; 157: 170877, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36108978

RESUMO

Absolute or relative hyperglucagonaemia is a characteristic of both Type 1 and Type 2 diabetes, resulting in fasting hyperglycaemia due in part to increased hepatic glucose production and lack of postprandial suppression of circulating glucagon concentrations. Consequently, therapeutics that target glucagon secretion or biological action may be effective antidiabetic agents. In this regard, specific glucagon receptor (GCGR) antagonists have been developed that exhibit impressive glucose-lowering actions, but unfortunately may cause off-target adverse effects in humans. Further to this, several currently approved antidiabetic agents, including GLP-1 mimetics, DPP-4 inhibitors, metformin, sulphonylureas and pramlintide likely exert part of their glucose homeostatic actions through direct or indirect inhibition of GCGR signalling. In addition to agents that inhibit the release of glucagon, compounds that enhance the transdifferentiation of glucagon secreting alpha-cells towards an insulin positive beta-cell phenotype could also help curb excess glucagon secretion in diabetes. Use of alpha-cell toxins represents another possible strategy to address hyperglucagonaemia in diabetes. In that respect, research from the 1920 s with diguanides such as synthalin A demonstrated effective glucose-lowering with alpha-cell ablation in both animal models and humans with diabetes. However, further clinical use of synthalin A was curtailed due its adverse effects and the increased availability of insulin. Overall, these observations with therapeutics that directly target alpha-cells, or GCGR signaling, highlight a largely untapped potential for diabetes therapy that merits further detailed consideration.


Assuntos
Diabetes Mellitus Tipo 2 , Inibidores da Dipeptidil Peptidase IV , Metformina , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Glucagon/uso terapêutico , Peptídeo 1 Semelhante ao Glucagon/uso terapêutico , Glucose , Guanidinas , Humanos , Hipoglicemiantes/uso terapêutico , Insulina/uso terapêutico , Metformina/uso terapêutico , Receptores de Glucagon/genética
17.
J Endocrinol ; 255(2): 91-101, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36005280

RESUMO

Discerning modification to the amino acid sequence of native glucagon can generate specific glucagon receptor (GCGR) antagonists, that include desHis1Pro4Glu9-glucagon and the acylated form desHis1Pro4Glu9(Lys12PAL)-glucagon. In the current study, we have evaluated the metabolic benefits of once-daily injection of these peptide-based GCGR antagonists for 18 days in insulin-resistant high-fat-fed (HFF) mice with streptozotocin (STZ)-induced insulin deficiency, namely HFF-STZ mice. Administration of desHis1Pro4Glu9-glucagon moderately (P < 0.05) decreased STZ-induced elevations of food intake. Body weight was not different between groups of HFF-STZ mice and both treatment interventions delayed (P < 0.05) the onset of hyperglycaemia. The treatments reduced (P < 0.05-P < 0.001) circulating and pancreatic glucagon, whilst desHis1Pro4Glu9(Lys12PAL)-glucagon also substantially increased (P < 0.001) pancreatic insulin stores. Oral glucose tolerance was appreciably improved (P < 0.05) by both antagonists, despite the lack of augmentation of glucose-stimulated insulin release. Interestingly, positive effects on i.p. glucose tolerance were less obvious suggesting important beneficial effects on gut function. Metabolic benefits were accompanied by decreased (P < 0.05-P < 0.01) locomotor activity and increases (P < 0.001) in energy expenditure and respiratory exchange ratio in both treatment groups. In addition, desHis1Pro4Glu9-glucagon increased (P < 0.01-P < 0.001) O2 consumption and CO2 production. Together, these data provide further evidence that peptidic GCGR antagonists are effective treatment options for obesity-driven forms of diabetes, even when accompanied by insulin deficiency.


Assuntos
Insulina , Receptores de Glucagon , Animais , Glicemia/metabolismo , Glucagon/metabolismo , Glucose/metabolismo , Teste de Tolerância a Glucose , Insulina/metabolismo , Camundongos , Estreptozocina
18.
Diabetes Obes Metab ; 24(12): 2353-2363, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35848461

RESUMO

AIM: To examine whether sequential administration of (d-Arg35 )-sea lamprey peptide tyrosine tyrosine (1-36) (SL-PYY) and the glucagon-like peptide-1 (GLP-1) mimetic, liraglutide, has beneficial effects in diabetes. METHODS: SL-PYY is an enzymatically stable neuropeptide Y1 receptor (NPY1R) agonist known to induce pancreatic beta-cell rest and improve overall beta-cell health. We employed SL-PYY and liraglutide to induce appropriate recurrent periods of beta-cell rest and stimulation, to assess therapeutic benefits in high fat fed (HFF) mice with streptozotocin (STZ)-induced insulin deficiency, namely HFF-STZ mice. RESULTS: Previous studies confirm that, at a dose of 0.25 nmol/kg, liraglutide exerts bioactivity over an 8-12 hour period in mice. Initial pharmacokinetic analysis revealed that 75 nmol/kg SL-PYY yielded a similar plasma drug time profile. When SL-PYY (75 nmol/kg) and liraglutide (0.25 nmol/kg) were administered sequentially at 08:00 AM and 08:00 PM, respectively, to HFF-STZ mice for 28 days, reductions in energy intake, body weight, circulating glucose, insulin and glucagon were noted. Similarly positive, but slightly less striking, effects were also apparent with twice-daily liraglutide-only therapy. The sequential SL-PYY and liraglutide treatment also improved insulin sensitivity and glucose-induced insulin secretory responses, which was not apparent with liraglutide treatment, although benefits on glucose tolerance were mild. Interestingly, combined therapy also elevated pancreatic insulin, decreased pancreatic glucagon and enhanced the plasma insulin/glucagon ratio compared with liraglutide alone. This was not associated with an enhancement of beneficial changes in islet cell areas, proliferation or apoptosis compared with liraglutide alone, but the numbers of centrally stained glucagon-positive islet cells were reduced by sequential combination therapy. CONCLUSION: These data show that NPY1R-induced intervals of beta-cell rest, combined with GLP-1R-stimulated periods of beta-cell stimulation, should be further evaluated as an effective treatment option for obesity-driven forms of diabetes.


Assuntos
Diabetes Mellitus Experimental , Neuropeptídeos , Animais , Camundongos , Glicemia/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/uso terapêutico , Glucose/uso terapêutico , Insulina/uso terapêutico , Liraglutida/farmacologia , Liraglutida/uso terapêutico , Neuropeptídeos/uso terapêutico , Peptídeo YY/metabolismo , Estreptozocina/uso terapêutico , Tirosina/uso terapêutico , Neuropeptídeo Y/farmacologia
19.
Biochimie ; 199: 60-67, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35439540

RESUMO

Ablation of glucagon receptor (GCGR) signalling is a potential treatment option for diabetes, whilst glucagon-like peptide-1 (GLP-1) receptor agonists are clinically approved for both obesity and diabetes. There is a suggestion that GCGR blockade enhances GLP-1 secretion and action, whilst GLP-1 receptor activation is known to inhibit glucagon release, implying potential for positive interactions between both therapeutic avenues. The present study has examined the ability of sustained GCGR antagonism, using desHis1Pro4Glu9-glucagon, to augment the established benefits of the GLP-1 mimetic, exendin-4, in high fat fed (HFF) mice. Twice-daily injection of desHis1Pro4Glu9-glucagon, exendin-4 or a combination of both peptides to groups of HFF mice for 10 days had no impact on body weight or energy intake. Circulating blood glucose and glucagon concentrations were significantly (P < 0.05-0.01) decreased by all treatment regimens, with plasma insulin levels elevated (P < 0.001) when compared to lean control mice. Intraperitoneal and oral glucose tolerance were improved (P < 0.05-0.01) by all treatments, despite lack of enhanced glucose-stimulated insulin secretion. Following exogenous glucagon administration, all HFF treatment groups displayed reduced (P < 0.05-0.001) glucose and insulin levels compared to HFF saline controls, although peripheral insulin sensitivity was largely unchanged across all animals. Interestingly, all treatments had tendency to increase pancreatic insulin content with pancreatic glucagon content significantly elevated (P < 0.05) by all interventions. These studies highlight the capacity of peptide-based GCGR inhibition, or GLP-1 receptor activation, to significantly improve metabolism in HFF mice but suggest no obvious additive benefits of combined therapy.


Assuntos
Diabetes Mellitus , Receptores de Glucagon , Animais , Glicemia , Dieta Hiperlipídica/efeitos adversos , Exenatida/farmacologia , Glucagon/metabolismo , Peptídeo 1 Semelhante ao Glucagon , Receptor do Peptídeo Semelhante ao Glucagon 1 , Glucose/metabolismo , Insulina/metabolismo , Camundongos , Receptores de Glucagon/agonistas , Receptores de Glucagon/metabolismo
20.
Biochem Pharmacol ; 199: 115019, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35358478

RESUMO

AIM: Poorly controlled diabetes is characterised by a partial or complete loss of pancreatic islet ß-cells, which deprives the remaining islet cells of important ß-cell-derived soluble signals, such as insulin or GABA. We aimed to dissect the role of the two signals in the development of islet α-cells, focusing specifically on α-/ß-cell transdifferentiation and using the stem cell differentiation factor nicotinamide as a comparator. METHODS: Streptozotocin (STZ)-treated diabetic mice expressing a fluorescent reporter in pancreatic islet α-cells were injected with GABA (10 mg/kg once daily), nicotinamide (150 mg/kg once daily) or insulin (1U/kg three times daily) for 10 days. The impact of the treatment on metabolic status of the animals as well as the morphology, proliferative potential and transdifferentiation of pancreatic islet cells was assessed using biochemical methods and immunofluorescence. RESULTS: Metabolic status of STZ-diabetic mice was not dramatically altered by the treatment interventions, although GABA therapy did reduce circulating glucagon and augment pancreatic insulin stores. The effects of the exogenous agents on islet ß-cells ranged from the attenuation of apoptosis (insulin, nicotinamide) to enhancement of proliferation (GABA). Furthermore, insulin and GABA but not nicotinamide enhanced the differentiation of α-cells into ß-cells and increased relative number of 'bihormonal' cells, expressing both insulin and glucagon. CONCLUSIONS: Our data suggest a role for endogenous insulin and GABA signalling in α-cell plasticity, which is likely to bypass the common nicotinamide-sensitive stem cell differentiation pathway.


Assuntos
Diabetes Mellitus Experimental , Células Secretoras de Glucagon , Células Secretoras de Insulina , Animais , Glicemia/metabolismo , Transdiferenciação Celular , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Glucagon/metabolismo , Insulina/metabolismo , Camundongos , Niacinamida/metabolismo , Niacinamida/farmacologia , Estreptozocina/farmacologia , Ácido gama-Aminobutírico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...